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Abstract

The control of the flutter instability and the conversion of the dangerous character of the

flutter instability boundary into the undangerous one of a cross-sectional wing in a

supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to

analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the

character of the instability boundary in the presence of a control capability, and ii) to outline the

effects played in the same respect by some important parameters of the aeroelastic system. As a

by-product of this analysis, the implications of the active control on the linearized flutter

behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed

loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new

methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to

greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of

advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the

analysis of more complex nonlinear aeroelastic systems.
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Introduction

During the evolution of the combat aircraft, dramatic drops of the flutter speed can be

experienced. As a result, the aircraft can attain the critical flutter speed and depending on the

nature of the flutter boundary, i.e. catastrophic or benign, the aircraft can exhibit dramatic

failures or can survive, respectively. At this stage, according to the flight regulations, the flutter

speed should be (22 - 25)% larger than the maximum speed the airplane can experience in the

dive flight. This large margin of security is imposed, in order to prevent the catastrophic failure

of the aircraft, in the event that the flutter speed would be crossed, and based on what was

considered until now that its crossing would result in a catastrophic failure of the aircraft.

However, as it was shown, the flutter boundary can also be benign, when, in this case, it can be

crossed without the occurrence of catastrophic failures.

This suggests the considerable importance of determining the conditions that result in the benign

and catastrophic characters of the flutter boundary, and in the development of proper

mechanisms able to convert, in an automatic way, the catastrophic flutter boundary into a benign

one. These facts emphasize the considerable importance of at least two issues: a) of including in

the aeroelastic analysis the various nonlinear effects, on which basis is possible to get a perfect

understanding of their implications upon the character of the flutter boundary, and b) the

importance of implementing adequate active feedback control methodologies enabling one not

only to increase the flutter speed, but convert the catastrophic flutter boundary into a benign one.

The problem of aeroelastic stability in the vicinity of the flutter boundary, for both the lifting

surfaces and supersonic panels, is an issue that requires a great deal of research toward

understanding the effects of the nonlinear unsteady aerodynamics and structural/physical

nonlinearities. Related to this problem, as it was shown in Ref. 1, the various nonlinearities that

occur in the aeroelastic governing equations and are of structural (i.e. arising from the

kinematical equations2-7), physical (arising from the constitutive equations), or coming from the

unsteady aerodynamic loads 2's'9, can render the flutter boundary either catastrophic or benign. In

the former case, crossing the flutter boundary results in an explosive failure of the structure,

while in the latter case, a monotonous increase of displacements with the increase of the flight

speed takes place.



It is well knownthat, aerodynamicandstructuralnonlinearitiesaffect theaeroelasticresponseof

the wing and the flutter boundary_-3'8'9.Taking in to account these nonlinearities, an

understandingof their potentialinfluenceon thecharacterof theflutter canbe reached.

This paperrestrictedto a supersonic/hypersoniccross-sectionalwing is intendedto addressthese

issues.

Dueto thepracticalimportanceof theseproblems,a thoroughinvestigationis needednotonly to

determinewhetheror not, for the actualgeometricalphysicalandaerodynamicalparametersof

thestructure,theflutter boundaryis of a catastrophicnature,but alsoto beableto convertit, if it

is thecase,to abenignone.

In thecasewhen,dueto thecharacterof considerednonlinearitiescoupledwith thatof geometric

and physical parametersof the lifting surface,the flutter boundaryis catastrophic,an active

control mechanismshouldbe implementedasto converttheflutter boundaryinto abenignone.

In this sense,by controlling the aeroelasticresponse,the active control methodology3"1°-t5is

likely to play a powerful role toward avoidingthe occurrenceof catastrophicfailures, toward

renderingtheflutter boundaryabenignone,andtheexpansionof theflight envelope.

In this papera generalmethodable to approachboth the problemof lifting surfacesflying at

supersonic/hypersonicflight speedregimesandthat oneof panelflutter_,havebeendeveloped.

This methodologywill permit to identify the natureof the flutter boundary(i.e. benign or

catastrophic)that, in contrastto the actualbrutemethods,is of ananalyticalnatureandinclude

all thefactors,startingwith thenonlinearitiesandcontinuingwith all theaeroelasticparameters

of the structure.In this context, generalconclusionsrelated to this matter can be reached.

Moreover,the analyticalmethodologyto addressthis issueis basedon powerful mathematical

toolselaboratedbyfamousmathematicians,suchasBautinj6,adiscipleof Liapunov,Hopf, etc.

All theseelementssuggestthat, in order to predict the flutter instability boundaryand its

character,it is vital to efficiently modeltheunsteadyaerodynamicsof lifting surfacesassociated

with thecorrespondingflight conditions.

It shouldbenoticed,thatin spiteof thegreatpracticalimportance,the literaturedealingwith the

problemof the determinationof theflutter boundaryof sectional-wingand its characterin the

presence of both physical and aerodynamic nonlinearities in the conditions of the

supersonic/hypersonicflight speedin the subcriticalflight conditionsis quite void of any such

results_.



There aremany potential sourcesof nonlinearities,which can have a significanteffect on an

aircraft's aeroelasticresponse.Oneessentiallimitation involving thelinearizedanalysisis that it

can only provide information restrictedto the flight speedat which the aeroelasticinstability

occurs.Furthermore,the linearizedanalysesarerestrictedto caseswheretheaeroelasticresponse

amplitudesaresmall.Often this assumptionis violatedprior to theonsetof instability.Thus, to

studythebehaviorof aeroelasticsystemsin eitherthepost-instabilityregionor nearthepoint of

instability, the nonlinearitiesof aphysicalgeometricalor aerodynamicnaturemustbeaccounted

for.

Hopf-Bifurcation

The issue of the character of the flutter boundary, i.e. benign or catastrophic, can be revealed

via determination of the nature of the Hopf-Bifurcation (i.e. supercritical or subcritical,

respectively) as featured by the nonlinear aeroelastic system 1'17

A pictorial representation of the behavior of the aeroelastic system in the vicinity of the flutter

boundary versus the dimensionless flight speed in terms of the growth of the limit cycles

oscillation (LCO) amplitudes is depicted in Figs. la and lb. The curves indicated by 1 and 2 are

characteristic to the stable and unstable domains. In these two cases, below the linear flutter

speed V F, the aeroelastic system is stable, whereas above Vr, the system is unstable for any

value of the initial conditions. Above V, in 3 the system tends to the stable LCOs, that is known

as supercritical Hopf-bifurcation (H-B), identifying an undangerous flutter boundary, whereas

the curve indicated by 4 characterizes a subcritical Hopf-Bifurcation that yields the catastrophic

failure of the spacecraft structure. The latter character of the flutter boundary is referred to as

dangerous. The solid lines 3 and 4 are also known as pitchfork bifurcations, whereas the dotted

lines identifies the two cases known as knee-like shape bifurcations in which a turning point is

experienced. Moreover, according to the initial conditions, in 3 and 4 the LCOs amplitudes of the

system decrease or increase (stable, unstable). In addition, the cases depicted in 5 and 6 are

stable and unstable. Due to its highly destructive effects, flutter instability must not occur within

and on the boundary of the operating envelope of the flight vehicle. In this sense, the nonlinear

approach of lifting surfaces of aeronautical and space vehicles permits determination of the

conditions under which undamped oscillations can occur at velocities below the flutter speed, (in

this case the flutter boundary is catastrophic) (case corresponding to curve 3 in Fig. I), and also

of the conditions under which the flight speed can be exceeded beyond the flutter instability,
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without catastrophicfailure (in this casethe flutter boundary is benign) (curve 4 in Fig. 1). As a

by-product of the nonlinear aeroelastic analysis, the flutter speed V F i.e. the speed for which the

undisturbed form of the considered structure ceases to be stable, can be determined via a linear

stability analysis of the aeroelastic system.

Loosely speaking, the Hopf-bifurcation theorem _8stipulates that if the characteristic equations of

the linearized system about an equilibrium position exhibit pairs of complex conjugate

eigenvalues that cross the imaginary axis as one of the control parameter varies, (in the present

case this parameter is the flight speed V ), then for the near-critical values of V there are limit

cycles close to the equilibrium point. Just how near the critical flutter speed V F has to be is not

determined, and unless a certain rather complicated expression is nonzero, the existence of these

limit cycles is only assured exactly at the flutter speed (V =V F). The sign of the expression

determines the stability of the limit cycle, and whether the limit cycle exists for subcritical

(V > V r ) or supercritical (V < Vr ) parameter values.

Behavior in the Vicinity of the

Flutter Instability Boundary

In this study, the determination of the dangerous/undangerous character of the critical flutter

boundary and its control reduces to the determination of the sign of the first Liapunov quantity,

for the instability boundaries that correspond to the purely imaginary roots of the characteristic

equation. The approach used in Refs. 1 and 2 for the panel flutter, is extended in the present

work to the aeroelasticity of nonlinear 2-D lifting surfaces.

The behavior of the general dynamic systems near the boundaries of the stability domains

was investigated by Bautin 16 who considered only those portion of boundary of the region of

stability for which the characteristic equations exhibits either one root only, or two roots, that are

purely imaginary.

Starting with the expression of the first Liapunov quantity L(V F ), pertinent conditions defining

the dangerous and undangerous character of the flutter critical boundary can be determined on

the basis of the considered nonlinear aeroelastic system. Specifically, from the condition that

L(V F) should satisfy the inequalities L(V r)< 0 and L(V r)> 0, we determine the undangerous



and dangerousportions, respectively,of the boundaryof the Routh-Hurwitz domain, and

implicitly, the influence played by the various nonlinearities included in the system.

In the next developments the first Liapunov quantity L(V F) corresponding to the nonlinear

flutter equations of open/closed loop cross-sectional wing in a supersonic/hypersonic flow field

is derived and is used toward determining the conditions that characterize the nature of the flutter

stability boundary.

Nonlinear Model of Cross-Sectional Wing

Incorporating an Active Control Capability

Toward formulating the open/closed loop aeroelastic theory of cross-sectional wing in a

hypersonic flow field both the aerodynamic and physical nonlinearities are included. This is

motivated by the fact that these nonlinearities can contribute differently to the character of the

flutter boundary. Moreover in the case when, due to the character of considered nonlinearities,

the flutter boundary is catastrophic, an active control mechanism will be implemented as to

convert the flutter boundary into a benign one.

The open/closed loop aeroelastic governing equations of a cross-sectional wing featuring

plunging and twisting degrees of freedom, elastically constrained by a linear translational spring

and nonlinear torsional spring, exposed to a supersonic/hypersonic flow field arel9'2°:

Soa(,)+c,,h(,)+Khh(,)=Lo(,),

S_h(t)+ l_a 0)+ c_(z O)+ m_ = m, (t)- m c. (2)

Herein h(t) is the plunging displacement (positive downward), o_(t) is the pitch angle (positive

nose up), the superposed dots denote differentiation with respect to time t, m is the structural

mass per unit span, S,_ is the static unbalance about the elastic axis, I,_ is the mass moment of

inertia about the elastic axis of the airfoil, ch and c,_, K h are the linear plunging and pitching

damping and stiffness coefficients, respectively. Moreover, in Eq. 2:

M_ = X_a(t)+_ 6sR_a"(t), (3)

represents the overall nonlinear restoring moment, that includes both the linear and the nonlinear

stiffness coefficients, K,_ and /_,_, respectively.



Within a linear model (6s =0), M,_ would simply be replaced by K_o_(t). The nonlinear

coefficient in Eq. (3) can assume positive or negative values. In the former case we deal with a

hard physical nonlinearities, while in the latter one with a soft physical ones. Notice that this

nonlinearity appears in the present case in the equation relating the restoring moment with the

pitch angle and, it has as such the character of a constitutive equation. For this reason, in contrast

to the terminology of structural nonlinearity, that in the authors' opinion is not proper for this

case, herein we are using that of physical nonlinearity.

The tracer 6 s that identifies this type of nonlinearities can take the values 1 or 0 depending on

whether this nonlinearity is accounted for or discarded, respectively.

The active nonlinear control can be represented in terms of the moment M c as:

M c = l_ca(t )+ 6cJCl c°_3 (t ), (4)

where Mc,i¢lc are the linear and nonlinear control gains, respectively. Also in this case, within

a linear active control methodology the tracer assumes the value 6c = 0.

As to reduce the aeroelastic governing equations to a dimensionless form, we also define the

parameter:

8=</<, (5)

and the two active control gain parameters:

Ill, = Mc /Ka , (6a)

_ z = i(/l c / K_, . (68)

B constitutes a measure of the degree of the nonlinearity of the system and corresponding to

B < 0 or B >0, the nonlinearities are soft or hard, respectively, while _,_2 denote the

normalized linear and nonlinear gains, respectively.

Let now derive the nonlinear unsteady aerodynamic lift and moment. From Piston Theory

Aerodynamics (PTA) 21-23, the pressure on the upper and lower faces of the lifting surface can be

expressed as:

12f r/(r-1)Y1 vz
p(x,t)= p= 1-_

a_

where the downwash velocity normal to the lifting surface v_ is expressed as _"

(7)
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and

v. = - + U= sgn z, (8)

2 P_
a = to-- (9)

P=

Herein p=, p=, U and a are the pressure, the air density, the air speed, and the speed of sound

of the undisturbed flow, respectively. In addition, _ is the isentropic gas coefficient, ratio of

specific heats, under constant pressure and constant volume, respectively (to = 1.4 for air), w is

the transversal displacement of the elastic surface from its undisturbed state

w(t)= h(t)+a(tXx-XEA), and sgn z, assumes the values 1 or-1 for z > 0 and z < 0, respectively.

In addition, XEA = bx o is the streamwise position of the pitch axis measured from the reading

edge (positive aft), whereas b is the half-chord length of the airfoil.

Retaining, in the binomial expansions of (7), the terms up to and including (v z/a=)3, yields the

pressure formula for the PTA in the third-order approximation2'22:

p--f-=- 1+ K"vz_'+p- a K'(_" + 1)( vz )")24 _a ) + _(t¢ + 1)( v" _/)312 t a "
(10)

(see Ref. 2, 22, 24, 25):

t¢(_" + 1)( v_ 2 g(t¢ + 1)2 z ),--_-P=l+K'vz_ '-t 1 " 7 -t
p_ a 4- _a 32 a

(12)

Herein the aerodynamic correction factor _' 23.

M

)'=_,M 2 (11)

enables one to extend the validity of the PTA to the entire low supersonic-hypersonic flight

speed regime. As mentioned in Ref. 1, Eq. (10) are satisfactory even for M > 2. It is also

important to remark that, Eqs. (7) through (10) are applicable as long as the transformations

through compression and expansion may be considered as isentropic, i.e. as long as the shock

losses would be insignificant (low intensity waves).

On the other hand, a more general formula for the pressure, obtained from the theory of oblique

shock waves (SWT) 24, and valid over the entire supersonic - hypersonic range, can be applied



Eqs.(10)and (12)aresimilar, theonly differenceoccurringin thecubic term.This is explained

bythefact thattheentropyvariationappearsin thepressureexpansion,beginningfrom thethird-

degreeterms. In contrastto the previouslymentionedformulae,this one,holdsvalid both for

compressionprior theshockwaveandfor expansion(it is beingassumedthat the shockwaves

areall the time attachedto thesharpleadingedge,andthattheflow behindthesewavesremains

supersonic).Moreover, Eq. (12) encompassesa numberof advantagessuch as: i) takes into

accountfor the shocklossesoccurringin thecaseof strongwaves,ii) canbeused,in the form

derived in Refs. 24, 25, over a largerrangeof anglesof attack (oe< 30 °) and Mach numbers

(M > 1.3), and iii) is still valid for Newtonian speed (M _ oo;,g _ 1). Comparisons of results

depicting the dangerous and undangerous character of the flutter boundary using these two

formulae will be presented at the end of this paper. However, as it clearly appears, within the

linear stability analysis, the flutter speed evaluated with these two expressions does not exhibit

any differences. This is due to the fact that for such an analysis, only the linear terms are retained

toward evaluation of the flutter speed, and these ones are identical for both PTA and SWT (see

Eqs. (10) and (12)).

The two cubic term coefficients differs by 10% for _¢= 1.4, and so, for a better prediction of the

character of the flutter instability boundary, it has to be included (see Ref. 22). Moreover, the

SWT, which considers the pressure losses through shock waves, gives more accurate results then

the PTA.

The flutter speed vs. flight Mach number obtained from the PTA and SWT including (i.e.

extending the flight speed toward low supersonic range), and discarding the correction factor for

the speed y (in the sense of considering M_ >> 1, and consequently _' ---->1) is shown in Fig. 2.

In addition, the flutter boundary obtained via the use of the exact supersonic unsteady

aerodynamics is depicted on the same figure. In the low supersonic flight speed regime, the PTA

and SWT with the corrective term gives a rather good agreement with the supersonic flow theory

and so, this correction should be included. At the same time, for higher supersonic Mach flight

numbers, the differences in the flutter predictions based upon the indicated aerodynamic theories

practically disappear. In the next developments, unless otherwise stated, Piston theory

aerodynamics has been applied.
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Considering that the flow takes place on both surfaces of the airfoil (with the speed

U=+ = U2 = U ), from the Eqs. (7) - (10) we can express the aerodynamic pressure difference _p

as"

M4q 1 )+ I+K_ 2M 2 1 )36perA= y[(w,, -- + w,_ (w,, +w,, ]. (13)v. -7 -r " C

Herein, M = U=/a is the undisturbed flight Mach number, while q = _pU_ is the dynamic

pressure.

Notice that, in Eq. (13) and in the next developments, the cubic nonlinear aerodynamic term will

be reduced to the (w, x)3 only, in the sense that the nonlinear aerodynamic damping will be

discarded. There is no clear-cut for the start of the hypersonic flight speed regime. Generally

speaking, speeds above Mach-5 are considered hypersonic. This is the speed at which the

aerodynamic heating becomes important in aircraft design. Having in view that this effect will

not affect the conclusions about the implications of the considered nonlinearities, the effects of

the non-uniform temperature field are neglected here.

Next, the nonlinear unsteady aerodynamic lift L,, O) and moment M,, (t/ per unit wing span can

be obtained from the integration of the pressure difference on the upper and lower surfaces of the

airfoil:

L,,(t)= I/h6pdx and M.(t)=-J]"ap(x-xEa)dx. (14a,b)

Their nonlinear final expressions can be cast in compact form as:

L,(t)- bU=p" y{12U otO)+M2U (l+lc)g2a3(t)+12[l_(t)+(b-XeA)Ot(t)_, (15a)
3M

M,, (t )= bU=p= y{12U. (b - XEA_(t )+ M 2U= (b - XF.AXI + _: )I,2Ct3 (t )
3M

+4[3(b-XeA)f_(t)+(4b 2 --6bXeA + 3x_a _(t)]} (15b)

As a result, the governing equations (1) - (2) considered in conjunction with Eqs. (15a,b) feature

the inertial and the aerodynamical types of couplings.

Upon denoting the dimensionless time v = Ut/b, the system of governing equations, including

the control terms, can be cast as:

¢ "(r)+ Zc, a"(r)+ 2¢,, (_/V)_'(v)+ (_/V)2 ¢ (.1:)= I, (r), (16)

10



Cv2 l/V2 =
(lV)

in which I. (- L.b/mU_) and m. (-M,_b2/I,_U 2), denote the dimensionless aerodynamic lift and

moment, respectively. These are expressed as:

/,, (_.)=_ 7 {12o_(r)+M_(l+tc)72o_3(l:)+12[_.(1:)+(b_xea)/ba,(r)]}, (18a)
12/nl,/

m. (t') = _' l{12(b-XEa)/bot(zy)+M2(b-XEA)/b(l+_)72a3('_)
12//M r_z

+ 4[(3 (b- xeA)/b¢'(r)+(4b 2 -6bxez + 3x_ )/b 2 a'(r))_

Herein,

differentiation with respect to time "r, /./=m/4pb 2 is the dimensionless mass parameter,

Za = Sa/mb is the dimensionless static unbalance about the elastic axis E, r_ = _/I,_/mb 2 is the

dimensionless radius of gyration with respect to E, V - U/bog_ is the non-dimensional airspeed

parameter, _ = (0_,/c% is the plunging-pitching frequency ratio, where _h (- c_,/2mw,, ),

_,_ (-c,_121,_c%) are the damping ratios in plunging and pitching, and where caa -ff--_hlm and

w,_ - x[-_/I,_ are the uncoupled frequencies of the linearized aeroelastic system counterpart in

plunging and pitching, respectively. In addition, in the above equations the terms underscored by

a single solid and a dashed line identify the aerodynamic and physical nonlinearities, whereas the

terms underscored by a double solid line identify the active control terms, respectively.

As previously stated, the conditions of dangerous or undangerous character of the flutter

instability boundary were obtained by the use of the Liapunov first quantity L(V v ). This quantity

will be evaluated next.

To this end, the system of governing equations is converted to a system of four differential

equations in the forml'2'16:

dxj 4

-S"aIJ)x +P,(xj,x2,x3,x4) j=l.4 (19)
1.....i t_l itl . ' "

(18b)

= h/b, is the dimensionless plunging displacement, the superposed primes denote

include both the physical, aerodynamic and

dr ,,,=1

For the present case the functions Pj(x,,x2,x_,x4)

nonlinear control terms that can be cast as:

11



4 4 4 4 4

+3_aal x ix I +6 .(20)pj(x,.x2,x3.x4l=Za}/)x? +2Za_/)xix, +Za_{)x;, o) 2 Za},_)%x,x,
i=1 i.l=l i=1 i,l=l i.l,k=l

(i*l) (i*l) (i#l¢=k)

Specializing these expressions for our case, the governing equations in state space form can be

reduced to:

dx 1

-- = x3, (2 la)
d_"

dx 2

- x 4 , (21b)
dr

dx_ a(3)x,l_,+it_) (3) (3) 3 (3) 3 _)_t)4_)t-'+a(3)xrT'+a'3)x4t-',a2x2(.c)+Saa222Xz(.C)+Ssa222x2(.c)+_ (3) 3 (21c)-- Oca222x 2 . ,
dr

dx4 _a14)x,(f)+a_4)x2(.C)+SAa222x2_.+_sa222x2_.+(4)3(_.) (_.)(4)3 (Sca222x2(12)+a(4)x(4) 3 3 3('r)+a_4)x4('r) • (21d)
dv

where (_ = x_ ;o: = x 2 ;_'= x 3 ;a'= x 4). The linear active control is included in the coefficients

a(3) and a (4) whereas the nonlinear ones are terms accompanying the tracer 5 c2 2 , included in the

The coefficients of Eqs. (21) are displayed in Appendix A. As it clearly appears from these

coefficients, if the streamwise position of the pitch axis coincides with that of the center chord,

the nonlinear aerodynamic terms decay in importance, in the sense that the aerodynamic pitching

moment vanishes.

Considering the solution of Eqs. (21) under the form xj = Aj exp(0)t), the characteristic equation

corresponding to the linearized system counterpart is:

0)4 + p0)3 + q0)2 + r0) + s = 0, (22)

where:

Vy[4+ 3x 2 + 6Xo (Z_- 1)- 6Z_ ]+ 3r_ (Vy + 2M.//¢_ + 2M.//_¢,, )

p= 3M M.tV(r_ _ Z2 ) , (23a)

3Mlur_[M=l.lO +_-2 +lff, )+ 2_,,(Vy + 2M_p_',, )]
q= , _ 2

3M 2/./'V (r_ - Za2 )

Vy[V(7 + 3M=I.t-3M=ltZ,_)+8M.,u_,, + 6M=p0)--x_" h - 3M_#xo(V + 4_',, )], (23b)

4- 27.(2 23M. v (4-zo)

_2 [M.#(1 + Iff, )r_ + V 2y(x o - 1)1

s - M 4 (23c).pV (r_ - Z_ ) '

12



34 [2M /.tN2_'a + (! + gt, XVl' + 2M./-tg_h )]+ VTN[3oD-xo - 6x0 (_ + V¢,, )+ 2(2_ + 3V_',, )] .(23d)

r= 3M_I-tV3( r2 - Z_ )

Three of these parameters, namely q, s, and r are dependent of the linear control gain gq. This is

important toward determination of the flutter boundary, that becomes function of the control

gain. These expressions substantiate in a strong way the previously mentioned statement, that

within the present approach, the issues of the control and nature of flutter boundary can be

determined in an analytic way.

As a reminder, for steady motion, the equilibrium is stable, in Liapunov's sense, if the real parts

• ')6

of all the roots of the characteristic equation are negative-. It is well known that, the analysis of

the roots of this equation, leads to the Routh-Hurwitz (R-H) conditions, which define the system

parameter bound for the stability of the considered state of equilibrium.

The R-H conditions reduce to the inequalities p >0, q>0, r >0, s >0, and

9 9

_R= pqr-sp--r->0. For the aeroelastic stability problems, in which the condition

A t = sp/r + p2/4 > 0 should be satisfied, the roots of the characteristic equation on the critical

flutter boundary, 9l = 0, are given by:

o9_,2 = +ic, (-03,4 = m + in where i = af-2-1, (24a)

and

2

C2 r P 2 sp p=--, m=---, n - , n>O. (24b)
p 2 r 4

The first of equation (24a) reveals that the required condition for the application of Hopf

bifurcation is fulfilled.

For sufficient small values of the speed V, all the roots of the characteristic equation are in the

left hand side half-plane of the complex variable and the zero solution of the system is

asymptotically stable. The value V = V v for which the two roots of the characteristic equations

are purely imaginary and the remaining two are complex conjugate and remain also in the left

hand side half-plane of the complex variable, is critical and corresponds to the critical flutter

velocity.

Remembering that the condition of Hopf-Bifurcation is obtained if the characteristic equation has

a pair of purely imaginary roots, then, in order to identify the "undangerous" portions of the

stability boundary from the "dangerous" ones is necessary to solve the stability problem for the

system of equations in state-space form in the critical case of a pair of pure imaginary roots.
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The expression of the boundary of the region of stability 91 for the open/closed loop cross

sectional wing in a supersonic/hypersonic flow field is defined by the equation:

9{= I {-3M I.t_2[M _(I+IIq)r_-V2T(x,,-I)_3r2(VT+2M II_ + 2M /l_,,)
27M'V_I.I4(r_ - ZJ y

+ VT[4 + 3x_ + 6x,, (Z_ -1)- 6Z, ]}z_ 3M _/./2 {3r2 [2M =/.t_2_,_ + (1+ gt, Xvy + 2M /./_,, )]

+ V}'_[4_ + 3o9x,; + OVa',, 6xo(_ + _',,)_- ItS"- ZS )+ {3r_"[2Mltoa "_ + (1+ V, )

(V)' + 2M /a_¢,,)]+ V?_[4O + 3c0--x,2,+6VCh - 6x,,(_ + V¢,,)_{3r_(V?z + 2M=1_¢_

+2M >vr[4+ +6x0(zo- I)-62o]]{3M_ rg +V,)
+ 2_,_ (VT + 2M=u_" )]+ VT[8M=Ia_ h + 6M =U_x_ _,, - 3M.I.tx o (V + 4_,, )

+ V(?, + 3M_ - 3M=_x_ )]}}= 0 .(25)

Notice that this expression is general and includes the relationship between the flutter speed and

the flutter frequency, parameters evaluated on 91 = 0 in terms of the basic geometrical and flight

parameters. In the particular case in which the structural damping ratios in plunging and pitching

are discarded and "F_ l, i.e. no correction for the flight speed range is included, the expressions

of frequency ,_r and speed V x on the flutter instability boundary can be obtained as:

2 )- +3_ 2Z,_(l_ Xo )

ZF = +_2[(l_xo), +_ ] , (26)

_f_F__]_/ 2 1 2 __

_ 1)
VF ff-mm_ /.tM [(1+ gt, )Z, _ +(1-xoX_2ZF- (1 +gt, ))]-_(l+gt,) " (27)

These expressions, constitute the extended counterparts of those obtained by Ashley and

Zartarian 2_'23 in the case of absence of the control. As a result, Eqs. (26) and (27) represent the

dimensionless flutter frequency and flutter speed of the closed-loop system. As a remark, in these

expressions only the linear control gain is involved.

In Fig. 3 the influence of the linear control gain gtj on the flutter speed is emphasized. It clearly

appears that with the increase of the control gain, an increase of the flutter speed is experienced.

Moreover, toward larger values of gq the control is more effective and a larger increase in the

flutter speed is experienced.

Following the ideas developed by Liapunov 27 - Bautin _6, the dangerous or undangerous portions

of the flutter instability boundary can be determined, via determination of the sign of the

Liapunov's coefficient. Following Bautin, the system of equations (21) is reduced to the

canonical form as:
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p t t t t

-- 'C_2 "1-Qt_1,_2,_3,_4) , (27a)
dr

t t t I Pd_--&_:c_, +Q0. (_,,_2,_3,_4) , (27b)
dr

p

+
dz

(27c)

d_
- n_;-m_4 + Q4 (_[,_;,_._,_J), (27d)

dr

where m, n and c are determined by Eqs. (24b). In Eqs. (27) Qi denote the nonlinear terms

appearing in the canonical counterpart of Eqs. (21). The expression of the first Liapunov quantity

is given under a closed form in Ref. 1. For the present case, the first Liapunov quantity is

expressed in terms of the coefficients A 01 as:\Is

(28)3n" _ 0). #2) + a(2) + a0) ),
L(VF)=-_ctA,,,-..n2 "'112 --122

where, the terms in the bracket of Eq. (28) are expressed via the coefficients -(j) appearing inOl kls

Eqs. (18), as:

A0): -_--(_2 (3) +a --(4)tv _ t_ '_ (29)kls j302220_2ka2tO_2s j4_222t'_2kt_211Z2s ]"

_0

The various components of (28), evaluated on the instability boundary are explicitly expressed

as:

A(,) ___1_1(,9 a(3) +,_ _(4))1_ I (30a)
II1 -- A0 \_13 222 _14U222 '

a(2) _____1 (_ a0 ) -,-t_ _(4) )_2 (30b)
222 -- AO _ 23 222 --_241"t222

A(2) _l(d , .,(3) t_ _(4))_22_122 (30c)
112 -- Ao \_23_222 +_24_222

A('/ 1 (,._ .,0) 4-,_ _(4)_,20_222 (30d)
122 = "_0 \_13u222 -- _146t222

where the adjoint of a matrix is defined as [6_,,]= Ao[O:jp]-I and A o = c% is the determinant of

the matrix of coefficient _z0 . In addition, the parameters o_0 are:
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°2c;illa 2,a 3,= a_l) +CaO)3 a_O'

ap} al3) al'}
0:21=all) a_') a_')-cRa_2),

a (2) a_2/ a_2)13

ap ) a_') al 3) a_3)

°:22=Ca_2 ) a_2) +cai2) a_2) '

(31a)

(31b)

(31c)

while the coefficients of the system of Eq. (29) are:

r2X_ SAM=(I+y)&3[(Xo-I)z_+r:]
_(3) =((SsB+Scllt2)V2F( d -Z_)- 12_(r2 -Z_)t_222

=(6sSNc +(_cCNL)Z_-QANL[(Xo-1)Z_ +4] , (32a)

a(4) _(_sB+Sclll2 4 )+6AM=(I+_')A?(Xo-I+z_))VTtr_t -Z,_ 12¢t( r2 -X_)222

=--(_sSNL +_cCNL)+_aANL(X o --1+ Za) (32b)

Herein the physical and aerodynamic nonlinear parameters as well the nonlinear control terms

2

G
SNL = B 2 2v,. (ro-zo)' (33)

M (1+},')_ 3

AuL 1211(r_ - Z_= ), (34)

c > 0, the flutter critical boundary is undangerous or

L(Vr)< 0 and L(V F )> 0, are fulfilled, respectively,

are defined as:

4

where V F is the flutter speed. Moreover, _A,6s and _c are tracers that, depending on the effect

that are identified, should be taken as one when the respective effect is taken into account, and

zero when is discarded.

Defining [_jp ]= [ce,, ]-l and noticing that

dangerous, if the following inequalities,

where:

-- (3) (_" _(3) _" _(4))_2L(VF )= (a,,a222 4-_- _(4))::Z3 + +-- _14_222 \_ 23 _t 222 _24_222

-- (3) )_220:12 + -- (4) 2•dl-(_ ) a,.D--I-_ ,(4) 2 (_- .0) +a,4a=R}:Z,2%2_ _3 _-- --_24td222 \_13u'222 " (36)
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In an extended form, the above expression can be cast as:

(a,s L+acC L)l(al,Zo- +(a ,xo- +(a2,zo-a2+) 22<+
-_aANt _3 [(x,,-1)X _ + r_ 1-¢4 (x,,-1 + Z_ )}_, + _3 [(xo- 1)Z_, + r2 ]-a24 (x,,-I + Za )}:z_=

+{&2, [(xo -l)za +r2]-_4(x.-l+xa_22a(2 +{_,3 [(xo -I)z,, + r2 ]-¢4(x,, -l+z,_)_,2a22} . (37)

Using the expressions of Sue, ANt - and CNL (Eqs. (33) through (35)); from Eq. (37) that is

multiplied by VF 2 , paralleling the procedure devised in Refs. 1 and 2, the character of the flutter

under the conciseboundary, i.e. undangerous or dangerous, may be expressed, respectively,

form as:

V 2 V 2 V 2 V 2
F < r ' or F > r'

where:

V_2 = A 1/A2 •

(38a,b)

(38c)

In Eq. (38c) the parameter A_ contains the physical and the nonlinear control gain parameter,

whereas A 2 , includes the aerodynamical nonlinearities. These are expressed as:

At= (r__Z_)

+ (_-23Z,,-a--24 _=°_,22 + (_,Z,, -a14 _,2a22 ] , (39a)

6AM=( 1+ y)_3 {_3[(xo_l)z++4]__14(xo_l+z,,)_ '
A2-12/./(4 _ Z,_ )

+ {_23 [(Xo- I)Z,, + 4 ]- _24 (Xo - 1--I-,_a )}3_2

"I-{I_23 [(XO- l),_a -'I- 4 ]-- _24 (Xo -- l -l- +,,_'+ )}Sg 22 0_'122

-t- {_, 3 [(Xo -- 1),,_'c, -t-q]--'_,4(Xo-l't-,_a)}2glzOL_2 } (39b)

As a very important consequence, in absence of nonlinear control, for B < 0, i.e. for soft

physical nonlinearities, the expression of V_2 is negative, and the relation VF2 > Vrz is satisfied for

any flight supersonic Mach number. This implies that in this case, even in the presence of the

linear control, a subcritical Hopf-Bifurcation is experienced, (see Fig. 9, where the Liapunov

First Quantity is depicted). On the other hand, for B > 0, i.e. for hard physical nonlinearities, in

the presence of the linear control, the transition from the undangerous flutter boundary to the

dangerous one occurs at higher flight Mach numbers (see, for example Fig. 9).

Moreover, as mentioned before, if x o = 1, Eq. (37) reduces to the following one:
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2 3 _ 2 3 _ '_ _ 2 -----¢ 2 2
--(_mZNa[(OEl3ra --_ll4Xct)l_21 + (a23r a -_-_24Za)_22 + (_23r_- G(24,)fa)_(22_12 + (Of131 a -_114Za)0_121_22] ,(40)

In this case, it clearly appears that a decrease of the influence of the aerodynamic nonlinearities

on the aeroelastic system is experienced.

Critical Flutter Boundary: Stability Analysis in

Presence of Active Control

As to render clearly the results concerning the critical flutter boundary for open/closed loop

cross-sectional wings, as displayed in Figs. 6 through 16, some explanations on a couple of

generic plots, Figs. 4a and 4b, are given next. In Fig. 4a, the intersections of the two curves V r

and V, separate the parts of the flutter boundary that are undangerous (for V F < V r) from the

dangerous ones, for which the opposite relationship is satisfied, namely V F > Vr . Needless to say,

in such a case a switch of the sign in the first Liapunov quantity occurs, (see Fig. 4b). The graph

depicting the first Liapunov quantity L(V F), that defines the portions of the boundary of the

region of stability, is displayed in Fig. 4b. On the curves that represent the flutter critical

boundary, the "dangerous" and "undangerous" portions are being indicated for each case by the

dotted and gross lines, respectively. In the range in which Vr < Vr, we have the following

possible situations: i) for V < VF, as time unfolds, a decay of the motion amplitude is

experienced, which reflects the fact that in this case the subcritical response is involved, ii) an

ideal condition, for V -- Vr the center limit cycle occurs, which reflects the fact that in this case a

periodic orbit is experienced and iii), for the speed parameter V > V r , the response becomes

supercritical, while for V F > Vr the subcritical flutter boundary is experienced. The parameters in

use for the simulations, unless otherwise specified, are chosen as:

p = 100;X, _ = 0.25;_ = 1.2;r,_ = 0.5;_',_ = _h = 0;x0 = 0.5;y = I;K" = 1.4;¢_ A = _s = _c = I;B = 50.

The effect of physical nonlinearities on the character of the flutter boundary is carried out in

terms of the nonlinear parameter B, see Eq. (4). For the condition indicated, the aeroelastic

system appears to be characterized by subcritical Hopf bifurcation in the upper half plane

(dangerous flutter boundary) and supercritical in the lower half plane (undangerous flutter

boundary). The graph depicting the first Liapunov quantity L(V F ) for uncontrolled lifting surface

and for the cases in which aerodynamic and physical hard nonlinearities are retained, is
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displayedin Fig. 6. In thesesimulationsboth typesof nonlinearities,have been considered

separatelyand together.It clearlyappearsthat in presenceof aerodynamicnonlinearitiesonly,

the Liapunov quantity is positivefor any flight Mach number.This result reflects the fact that

this type of nonlinearitiesprovidesa "catastrophic"characterto the flutter boundary,implying

thata subcriticalH-B occurs.On theotherhand,in presenceof physicalhardnonlinearitiesonly

theoppositesituationis experienced.In this sense,at relativelymoderatesupersonicflight Mach

numbers,the flutter is benign,while with the increaseof the flight Mach number,the flutter

becomesdangerous.This implies that for larger flight Mach numbersthe effects of the

aerodynamicnonlinearitiesbecomeprevalent. It is also shown that the neglectof nonlinear

aerodynamicterms, yields inadvertentresultsrelatedto the characterof the flutter instability

boundary,especiallyat highflight Machnumbers,whentheaerodynamicnonlinearitiesbecome

detrimentalfrom thepointof view of thecharacterof flutterboundary.

Moreover, as a consequenceof theseresults,if the aerodynamicnonlinearitiesare discarded

(_a= 0) the aeroelasticsystemfeaturessupercriticalityor subcriticality for any flight Mach

number,dependingon whetherhard (B > 0) or soft (B < 0) physicalnonlinearitiesarepresent,

respectively.

The influence of the hard physical and aerodynamicnonlinearitiesfor controlled/uncontrolled

systemis presentedin Fig. 7. Thedottedandsolid lines identify thecasein which bothphysical

hard (B = 50) andaerodynamicalnonlinearities,and aerodynamicnonlinearitiesonly (B = 0 ),

areincluded,respectively.Thecontrol mechanismactin bothsituationstowardthestabilization

of the system,i.e. to enhancethe flutter behavior.Also in this case,the inherentdangerous

character of the flutter boundary that correspondsto the case when only aerodynamic

nonlinearitiesareconsidered,canbeconvertedintoabenignone.

Figures6 and7 showthatthesoft nonlinearitiescontributeto renderthesystemunstableandthat

only acting with a nonlinearcontrol the inherentcatastrophictype boundarycan be converted

into a benign one (Fig. 6). Moreover, it clearly appearsthat the linear active control cannot

changethecharacterof flutterboundarywhensoft physicalnonlinearitiesarepresent(Fig. 7).

From Eq. (28) defining theLiapunovquantity,thesupercriticalpartsof the flutter boundaryare

definedin aclosedform. Moreover,by usingEqs.(37), curvesassociatedwith Vr and V r have

been plotted in Figs. 10, 12, 14 for B = 50 and _a = 1. Each of these graphs present in the plane

(V, _flight) ( _ = M L, where L = 1/(pZ_r _ ) is the scaling factor), the dangerous and undangerous
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portions of the flutter boundary for open/closedloop sectionalwings. The corresponding

Liapunovquantity, is depictedin Figs. 11, 13, 15,in theplane(L, _,flight). Moreover, in Figs. 10

through 16 aerodynamic and physical hard nonlinearities have been included 5 A = 1, 5 s = 1;

B = 50. With dotted lines are marked the values of the flight Mach number where the transition

from the benign to the catastrophic character of the flutter boundary occurs. As a consequence, a

complete picture of the variation of dangerous and benign parts of the flutter boundary has been

provided. In the plots depicting the Liapunov quantity, the gain parameters Vi (i=1,2), help to

understand the potentiality of the linear and nonlinear active control to enhance the flutter

instability behavior and convert the dangerous flutter boundary into an undangerous one.

Notice that, the linear active control is able to act also toward the enhancement of the flutter

boundary. This can be readily seen either from Eq. (27) and from Figs. 3 and 5 where for V_ ¢: 0,

V F was depicted, and the beneficial influence on the increase of the flutter speed revealed.

The dangerous and undangerous portions of the flutter boundary for open/closed loop sectional

wings via the use of the two different aerodynamic theories (PTA and SWT) are presented in

Fig. 16. In addition to what was stated before about these two theories, from this plot and from

Table 1, it can be revealed that the PTA gives more conservative results (less then 3% difference

at the transition flight Mach number), as compared with the SWT, in the sense that within PTA

the transition from the benign to catastrophic flutter boundary appears at slightly lower flight

Mach numbers as compared with those featured by SWT. This conclusion was expected by

comparing the cubic nonlinearities in the two pressure expressions (see Eqs. (10) and (12)),

wherefrom it clearly appears that the one within the PTA is larger than that in SWT.

Conclusions

It was shown that in some circumstance the hard physical and aerodynamic nonlinearities

contribute in different manners to the determination of the "undangerous" or "dangerous"

character of the flutter critical boundary, in the sense that the "hard" nonlinearities render the

flutter boundary benign, whereas the "soft" ones contribute to its catastrophic character. In

addition, at high flight Mach numbers the aerodynamic nonlinearities contribute invariably to the

"dangerous" character of the flutter boundary. This implies that, with the increase of the

hypersonic flight speed, when the aerodynamic nonlinearities become prevalent, the flutter

boundary will become catastrophic, irrespective of the presence of hard physical nonlinearities.
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On the other hand, soft physical nonlinearities(B < 0) contribute in the samesense,as the

aerodynamicnonlinearities,to thedangerouscharacterof theflutter boundary.It wasalsoshown

that, in the casewhen due to the natureof the involved nonlinearities,when the catastrophic

aeroelasticfailure canoccur,anactivecontrolcanbeusedasto converttheflutter boundaryin a

benignoneor to shift thetransitionbetweenthesetwo statestowardlargerflight Machnumbers.

Numericalsimulationsillustratethat: i) the increaseof the valuesof the active control gains

yields an increaseof the "undangerous"portionsof theflutter instability boundary,ii) with the

increaseof the supersonicflight Mach numbersthat results in an increaseof aerodynamic

nonlinearities,a decreaseof the "undangerous"portionsof the flutter instability boundaryis

experienced,iii) in the casesin which catastrophicaeroelasticfailurescanbe experienced,the

activecontrolcapabilitiescanrendertheflutter boundarysafe,in thesensethatits crossingdoes

notyieldsacatastrophicfailure,andiv) acomparisonsof theresultsprovidedwhenPTA andthe

SWTareused,revealthatthePTAgivesmoreconservativeresults.

As clearly appearsfrom this paper,the issueof generatingthe activecontrol momentwasnot

addressed.It is in the authors'believethat thiscanbeproducedvia a deviceoperatingsimilarly

to aspring,whoselinearandnonlinearcharacteristicscanbecontrolled.

To thebestof the authors'knowledge,this is thefirst paperwheretheproblemof thecharacter

of the flutter boundaryof cross-sectionalwing wasapproachedin a so generalcontext, in the

sensethat, the implications of the various nonlinearitiesconsideredin conjunction with the

presenceof a controlcapabilitieshavebeenconsideredtogetherasto analyzethis problem,and

determine also the combination of those nonlinearities and parametersthat can yield a

conversionof thecatastrophictypeof flutter into a benignone.Needlessto say,theconceptand

methodologypresentedhere can be extendedas to treat more complex associatedproblems

involving 3-D straightandsweptaircraftwings.
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Appendix A

The coefficients of the aeroelastic governing system represented in state-space form, Eqs. (21):

--2 2

a13)_ o9 r,_
V2(r_ -Z2) '

(A.I)

a(3): M=pz_r_(l+llt,)-V'-_'[(Xo- 1)Z,_ + r_]

2 V _ p _,r_ -Z,_)2M .12 2
(A.2)

6_1_t=M-(l+_c_3[(Xo-OX_+'_]
A"222 12/.t(r__Z_) , (A.3)

5 _(3) =Bv2 Z_,r_ (A.4)

5 _(3) Z_,r_
(A.5)

,) ,_

vM u(4_z2) , (A.5)

a_3)= Vy[(3Xo2 -6x o +4)Z_ + 3(x o -1)4 ]+ 6M.p¢_Z_4
3VM p(r_, 2-Z_)

(A.6)

_2Za 2 )'a(a)=V2(4_Z _
(A.7)

a_4) _ W 2_(x 0 --1 + Z_ )- M=/t4 (1 + I/t, )
V2M lt(r2-Z_ )

(A.8)

2

t'_ _(4) =-B z G2 2), (A.9)vS"222 V (F a -Xa

2

i_ _(4) Fa

_"_2:-_'_v_(d_z_), (A.9)

6_(4) _A3M=(I+)'XXo-I+z_)

A"222 12/l(rff _ Z_ ) ,
(A.10)

a_4) V_.(x o -1 + Z_ )+ 2M-II_,,Z_
= VMJI(4 - Z_ ) '

(A.11)

a_4)= V_'[(3xg-6Xo +4)+3(Xo-1)Z_]+6M.p4_ _
3VM p(4 - Z j )

(A.12)
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Figure Captions

Figs. la and lb: Character of the flutter boundary in the terms of LCOs amplitudes - VF flutter

speed of the linear system; H-B: Hopf-Bifurcation.

Fig. 2: Comparison of the predictions of the flutter speed vs. the flight Mach number when using

Piston Theory Aerodynamics (PTA), of aerodynamics based on Shock Waves Theory (SWT),

and of exact unsteady supersonic aerodynamics,

(/.t = 100; Z,_ -- 0.25; _ = 1.2; r,_ = 0.5; _,_ = _h = 0; x 0 = 0.5 ).

Fig. 3: Flutter speed vs. flight Mach number. Influence of the linear control gain _.

Figs. 4a and 4.b: Generic representation of the dangerous and undangerous portion of the flutter

critical boundary. The upper plot (4.a) is in the (V - Mnight) plane, while the bottom one (4.b) is

in the (L - Mflight) plane; L < 0 correspond to Vr > VF and vice versa.

Fig. 5: Evaluation of the flutter speed for selected flight Mach numbers vs. linear control gain

I]/I .

Fig. 6: Influence of the physical and aerodynamical nonlinearities on the First Liapunov

Quantity L for the uncontrolled cross-sectional wing.

Fig. 7: Influence of the physical nonlinearities on the First Liapunov Quantity L in the

presence/absence of linear and nonlinear active control gains. Aerodynamic nonlinearities

retained. Flutter character change for system encompassing physical hard nonlinearity.

Fig. 8: Conversion from subcritical to supercritical H-B via nonlinear active control, for system

encompassing physical soft nonlinearity (B =-10).

Fig. 9: Subcritical H-B for system encompassing physical soft nonlinearity (B=-10), linear

active control included.



Fig. 10: Undangerous and dangerous portions of the flutter critical boundary in the presence of

linear control.

Fig. 11: Influence of the linear control on the First Liapunov Quantity L.

Fig. 12: Undangerous and dangerous portions of the flutter critical boundary in the presence of

nonlinear control.

Fig. 13: Influence of the nonlinear control on the First Liapunov Quantity L.

Fig. 14: Undangerous and dangerous portions of the flutter critical boundary in the presence of

linear and nonlinear controls.

Fig. 15: Influence of the linear and nonlinear controls on the First Liapunov Quantity L.

Fig. 16: Undangerous and dangerous portions of the flutter critical boundary with and without

control in presence of both nonlinearities. Comparison between SWT and PTA.

Table

Tab. 1: Undangerous and dangerous portions of the flutter critical boundary for PTA and SWT.
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